
Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 38

FROM ENGINEERING TO PROGRAMMING:

SMART MULTI AGENT SYSTEM APPLICATIONS USING ARL

From Engineering To Programming : Smart Multi Agent System Applicationsالعنوان:
Using ARL

مجلة المعهد الدولي للدراسة والبحث - جسرالمصدر:

المعهد الدولي للدراسة والبحثالناشر:

.Juneidi, Salaheddin Jالمؤلف الرئيسي:

مج4, ع6المجلد/العدد:

نعممحكمة:

2018التاريخ الميلادي:

يونيوالشهر:

57 - 38الصفحات:

:MD 945211رقم

بحوث ومقالاتنوع المحتوى:

Englishاللغة:

HumanIndexقواعد المعلومات:

هندسة الحاسب، هندسة البرمجيات، البرمجة، علوم الحاسبمواضيع:

http://search.mandumah.com/Record/945211رابط:

© 2020 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

http://search.mandumah.com/Record/945211

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 38

FROM ENGINEERING TO PROGRAMMING:

SMART MULTI AGENT SYSTEM APPLICATIONS USING ARL

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 39

FROM ENGINEERING TO PROGRAMMING: SMART MULTI AGENT SYSTEM APPLICATIONS

USING ARL

Salaheddin J. Juneidi

Computer Engineering Department

Palestine Technical University Khadoori

Hebron –West Bank

Palestine

Salaheddin.juneidi@ptuk.edu.ps

ABSTRACT: Modern computing systems are generally based on embedded smart agents. They
are introduced as a new trend of computing paradigm; in which we can define smart entities in
software system or robotic machines. This modern trend of technology calls for new approaches
in both software engineering and programming techniques. Unlike Object Oriented programing
languages, Agent oriented programming languages and agent oriented engineering are not stable
and are not well defined, on the contrary, object orientation is well defined and consistent. From
the fact that, agent oriented programming is an implementation of agent oriented engineering;
this article follows this sequence and it tackles the application view over agent oriented software
system. (Agent Role Locking) ARL theory is used to design and implement agents in software
system, on the other hand Java threads are used to implement agents. The main aim is to show
innovative incorporation relationship between engineering methodologies and programming
application in Smart Agent Orientated Technology.
Keywords: Agent Role Locking Theory (ARL), Java Threads, Agent class, Role Class, Agent-Oriented

Programming AOP

1. INTRODUCTION

1.1 Objects and agents: Bottom lines

Several comparisons took place between

agents and objects as software entities, with

the aim to have a clear view toward objects

and agents. Actually, most of these

differentiations give no absolute bottom

lines between objects and agents regarding

definition and application. It is worthy to

have these bottom lines between objects

and agents, to have a final decision on when

and where agents can be embedded in our

software; we mostly concern about is the

minimum requirements needed for this

intelligent software entity to be considered

as an agent. In [1, 2] has discussed three

requirements:

i. Autonomy. An agent is not passively

subject to a global, external flow of

control in its actions. That is, an agent has

its own internal thread of execution,

typically oriented to the achievement of a

specific task, and it decides for itself what

actions it should perform and at what

time.

ii. Situatedness/ adaptability. Agents

perform their actions while situated in a

particular environment. The environment

may be a computational one (e.g., a

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 40

Website) or a physical one (e.g., a

manufacturing pipeline), and an agent can

sense and effect some portions it.

iii. Proactivity. Agents accomplish their

designed objectives in a dynamic and

unpredictable environment the agent may

need to act to ensure that its set of goals

are achieved and that new goals are

opportunistically pursued whenever

appropriate

1.2 Agent Oriented Programming

Languages

Various programming languages

have been proposed to represent agent

software entities. As a matter of fact, those

languages and programming codes directed

towards single agent base particular

problem solution (single problem solution).

This article is about to discuss a general

agent base computing theory that has

contemporary and complementary software

solutions that take in consideration

engineering and programming parts agent

oriented software application, in other

words, Agent Base Modeling Software

(ABMS) as clarified in Figure 1. In past

two decays new kinds of fifth generation

languages [3, 4], agent-base libraries and

agent tools have appeared to represent

agent-based computing, on the other hand,

there are a growing number of agent-based

applications, those applications distributed

in a variety industrial fields and software

informatics. Agent-based modeling can be

used to study dynamic and unpredictable

phenomena, those phenomena such as self-

control arranging work of machines; other

example is to predict consumer choice for

merchandise. Many other examples can be

given like to have real applications that

need to decide and act autonomously such

as social network analysis, behavioral

economics in stock market analyses,

understand how people's behavior affects

activities like pedestrian movement,

transportation traffic as part of machine

learning [5,6] …etc.

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 41

Prototyping

Model Architectural Design

Agent and Agent Rule Design

Agent Environment Design

Implementation

Verification and Validation

Figure 1 : Agent Base Modeling Software (ABMS

2. AGENT ROLE LOCKING THEORY

ARL
1

 ARL [10] introduces a new view of

multi-agent systems structure. The main

concept is based on role decomposition and

an agent entity plays only one role at a

given time . The first step of analyzing

MAS is to define the boundaries of a

system, by these boundaries we define the

environment we working with, the MAS

environment is set by all functions and

requirements specification of a given

system. The next step is to define the

organizations belong to this environment,

the organizational view is recognized by

defining the most general objectives of the

system, within each organization, there are

associated objectives and tasks, these

objectives and tasks are performed by

positions with responsibilities, Figure 2 for

MAS analysis, which views of MAS

environment into 1..a organizations, each

organization is decomposed into various

number of super role which represents a

position with an authority (permissions)

which represented in Figure 2 as a key, only

agents which have certain keys can locked

into legitimate certain roles in the

organization, role’s decomposition process

proceeds until we reach atomic roles which

represents the specific MAS functionality

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 42

(objectives), the atomic role performers are

agents

entities (responsibilities) .this ARL view of

MAS, as organizational view and role

decompositions, is consistent with role

definition in [7]:

i. Objectives: is represented in ARL by

atomic role entity.

ii. Responsibilities: ARL specifies agent

class entity as responsible to perform

roles.

iii. Permissions: eligibility constrains

within agent / role classes to be activated

(locked), represented in ARL by role/

agent keys.

ARL has other important distinctions from

other methodologies proposed for AOSE,

by defining agent types, each agent type is

identified by agent class (see next on agent

stat
1
ic structure) that can be instantiated.

Agent in MAS are not equal, they are

different according to their goals,

permissions entitle the agent to have more

(keys).

ARL presents two models (static model and

dynamic model) to describe the structure

and the behavior of agents and the roles

1
 Going into details of ARL analysis and design of MAS is

beyond this paper, consider references [7,9] for more
about ARL

they locked into, the next two sections have

summary of those two models.

2.1 Super & Atomic roles

 ARL emphasises on an individual agent can

perform a single role in a given time. To

manage agent / role complexity and mobility,

it’s important to determine the granularity of

each role. Because as shown in figure 3 agents

are can lock /unlock (to/from) atomic roles

according to constrains discussed later in ARL

theory.

Actually, during system design and

implementation, we cannot count on a generic

role to capture agent/ role as an engineering

process, for instance, if an agent is specified to

play the role of studying at university, (figure 4)

agents are autonomous and can change roles

any time or according there internal state, and

studying in the university has various activities

(dependent and independent) that have

communication with different agent [8]. On that

fact roles must be fine grained an agent may

play (locked with) this called atomic role that

normally has defined specific activities

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 42

Figure 2: An overview of ARL on MAS environment decompositions and role definition

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 43

Organization

Super role 1 Super role 2

Sub role 2Sub role1 Sub role 4

α γ

Sub role 5 Sub role 6

Sub role 3

Sub role 9Sub role 8Sub role 7

$

$ $

Figure 3: general organizational view of MAS with agents and keys

University

studying teaching

Internet

browsing
chatting

Reading /

writing

ω
θadministrating

λ

Test

assessment

Assessment

Give a

test

legends
Organization

Super role Atomic roleSub role

Student

Talking by

phone
lecturing

Lecture

preparing
Give lecture

Agent instances

Figure 4 : University Organization breaking up into Super and Atomic Roles

2.2 Agent definition

Each agent is given authorization

and eligibility to play atomic roles, this

eligibility is presented by super role

assigned key, so agents can lock into any

atomic role belongs to that super role.

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 44

 Organizational structure in MAS must be

defined, in which it clarifies super and

atomic roles. Then we can define Agent

types. For each super role an agent type can

be generated. So for super roles in Figure 3

we have three agent types Administrator,

student, and teacher, each of which have

the right and permissions to perform the

corresponding atomic roles, so these agent

types have keys (λ, ω, θ consecutively) of

super roles to perform their atomic roles.

These agent types may have other

permission from other organization in MAS

environment, accordingly, as much as keys

added to super roles, as much permission

are granted. For an agent type as much as

keys it has, as much as atomic roles it can

locked though MAS environment, all that

locking and unlocking take palce according

to MAS functionality specifications.

Returning back to our student agent

example, the role decomposition in Figure

3, gives us manageable way to understand

what the role (super role) and activities that

student instance may perform in a given

time. In our example the student agent must

have (ω) key to able to lock into its

appropriate atomic role.

ARL supports dynamic agent environment,

there are no mapping or pr-planned

scenarios among roles and agents, Agents

lock into atomic roles by two methods:

i. Role launching: agent launches atomic

role according its internal state, functional

requirement, or time bases.

ii. Role satisfying: agent performs atomic

role interdependent with an atomic role

that been launched by another agent.

Table 1 gives an example of interdependent

roles for the university organization, first

column is launching atomic roles that need

another roles to interact with that defined in

second column. This table called Agent

Role Coupling (ARC) that defines the

interdependency between roles in system.

Because an agent may have keys to lock

into several atomic roles in different

organizations, because agents move through

roles according internal state and

functionality , so for a given unit of time t

we cannot guarantee a specific agent would

be existed in an organization . In the next

subsections we are going through details of

ARL definitions and assumptions.

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 43

Atomic role (launching) Key Atomic role (satisfying) key

Studding (Reading , Chatting , Internet

Browsing… etc

ω Teaching (Lecture preparing , Give

lecture, Give Test, Asses ..etc)

Θ

Teaching (Lecture preparing , Give

lecture, Give Test, Asses ..etc)

 θ Studding (Reading , Chatting , Internet

Browsing… etc

Ω

Administration (admission, assign

classes, arrange classes …etc)

λ Studding (Reading , Chatting , Internet

Browsing… etc M

Ω

Administration (admission, assign

classes, …etc)

λ Teaching (Lecture preparing , Give

lecture, Give Test, Asses ..etc)

Θ

Table 1: ARC table, some selected interdependent atomic roles

2.3 Static Model

ARL proposes new development on static

structure of Agent-Class and Role-Class as

two separate idle entities, none of these two

classes are active, but when getting together

(locked) , they become active, by this

representation we can capture static systems

with mobile intelligent entities. This kind of

new static view development could be

integrated with UML reaching to AUML

[7,9] that supports object class on Agent

Orientation paradigm we have agent class

and role class. By this way agent entity is

free from any role burden, it can move from

one role to another without any pre-

assigned agent-role mapping, agents entities

can be instantiated to perform atomic roles,

agents can move freely and instantiated

according system functionality constrains (

agent –role switching constrains – see ARL

assumptions next section) or according to

an agent internal / mentality state. Role-

Class: represents the responsibilities of

position, in which conclude the objectives

that satisfied by an agent perform (locked

into) according given permissions. Agent -

Class: this class is mostly concern with

agent side and its characteristics, like

mental and internal state, goals, what kind

of roles it can perform according to the

knowledge the agent entity owns

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 45

Figure 5 : Agent class (left) Role class right see [9]

2.4 Dynamic Model

 Which involves in collecting

interdependent atomic roles presented into

Atomic Roles Couples table (ARC) as table 1 (

see ARL references [7,9]), this table defines the

couples of interdependent roles and their

candidates performing agents. Interdependent

role contains dependent atomic role in one

super role that couldn’t be accomplish without

the other role interaction (communication) . In

Figure 4, say X and Y are interdependent super

roles, for X the agent who eligible for launching

this super role must own α key, for the Y super

role the satisfying agent must own β key . To

specify the details of interaction between roles

couples, the Agent Interaction Protocols (AIP)

is used.

AIP firstly presented [7,9]. Roles couples are

represented by pairs; which represent MAS

interaction, communication and functionality.

From the agent point of view, the system start

functioning when some agent instance lock into

and launch a given role, which communicates

an interdependent role that calls a satisfying

agent, the two agent roles couples start to

operate, other agents instances start activated

and deactivated within roles according

functional constrains, agent mental state, and

agent-role switching constrains. Role -Class:

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 46

the role class supports super roles, it contains

atomic objectives, rules and services

description activities, as well as communication

acts (CA) for another other atomic role see

figure 6 of AIP for two interdependent roles X,

Y and the agents to perform[9,10].

Figure 6 : Simple agent role AIP diagram

2.5 Definitions and Assumptions in

ARL

i.An agent instant considered as agent type is

independent from role entity ,agent entity is idle

and activated when locked into role using given

key.

ii. Running agent-role (and therefore, for the

system to run) an agent must launch \ satisfy a

role.

iii. Each agent class represents a unique agent

type.

iv.An agent class can encapsulate knowledge

describing agents’ internal state, goals,

intentions, preferences etc, as well as methods

for role performing, and mechanisms for

reasoning. The agent class’ degree of

autonomy, flexibility and pro-activeness

depends on the amount of knowledge and

capabilities specified, depending on the

developers’ decisions to meet the software

functional and non-functional requirements.

v.An agent class can have as many as instances

depending on functionality during system’s run

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 47

time. Agents instance inherits the same

permissions and goals given to its agent’s type.

vi. As agents, atomic roles are not active too.

Atomic roles are represented by means of role

classes. For a role to be performed (i.e. for a

role class to become active) an agent has to lock

into it.

vii.There is no direct interaction between the

agents. For agents to interact, they need to be

locked in roles with interdependent activities.

Therefore, interaction, as well as any other

activity, is carried out only when agents

perform roles.

viii.When an agent locks to (launch) a given role,

then the role with interdependent activities

notify the MAS society (via its Vacancy Flag,

as it will be specified in role class) that need to

be served.

ix. For each atomic role to be served there must

be at least one agent type attains the key of

super role in which these atomic roles are

belonging to.

x. Agents may create instances (internal

instantiation) of its type to perform an atomic

role. Typical situations that this may happen

when other atomic roles need to be served

simultaneously by the same agent. An agent

instance –clone- terminates As soon as it

accomplishes its atomic role.

xi. An agent instance performs one and only

one atomic role at a given time.

xii. Agent - role switching constrains: An

agent may unlock from one role to lock

into another with respect to the

following constrains :

a) Passive Sensing: Performing unlocking

and locking according functional events and

constant time interval.

b) Active Sensing (role satisfying): An agent,

while performing a role, receives stimuli from

another role, like vacancy flag , so it may

decide to unlock from the current role to

perform another role according to the stimuli.

c) Internal state and goal precedence (role

launching): An agent may reach to the

decision to unlock and lock into other role by

reaching some internal state and goals that

dictate it to do so. Alternatively, an agent goal

may get a higher priority than the role

objective it serves.

The value of this article is the application part,

which is to apply ARL into real real

application of MAS , starring from engineering

designs of Agent Base System to writing

programming and codes for that system, and

show the increase of acceptance and the

practical usability of AOSE to be considered as

a new computing paradigm. As it provides

overall view of MAS dynamic and static

structures, presenting various modeling tools

for agents and roles , as we going to see in the

next sections , we will attest an application of

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 48

agent systems using ARL on multithreads programming language.

Figure 7: Bouncing ball agents moving randomly in frame

3. ARL APPLICATION

ARL provides a new-look for MAS,

separating agent classes and the role classes -"

breaking complexity though decomposition" -

which make it possible to control agents

separately and then join agent with roles that

may eligible to perform. Java is object oriented

programming language, in which similar to

agent oriented if we add intelligent factors on it,

on this assumption java as language will be

used to program agents and roles classes. Most

important we need to conserve agent’s

characteristics mentioned previously which are

(autonomous, proactive, mobile).

We going to use simple example (smart

moving balls) that will show diversity of agents

behavior : which basically is throwing balls in

some boundaries of canvas (form) , as soon as

the balls (agents) created, they perform a role

which is : moving freely in canvas boundaries

with no collision with other balls , the

knowledge that given to the agents is to check

next available contagious position, some balls

are selfish that is if the indented moving

position is not available it force the agent (ball)

allocated that position to move or else sleep (

deactivate) for some time and so on , all balls

can move as soon as there instant created so we

can see more than thread agent(ball) runs in a

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 49

one (time slice) unit of time depending on

system functionality. The result as shown in

Figure 7 describes free autonomous and non-

stop moving balls and selfish balls (blue) within

environment (Canvas) with no pre-planned next

position because it depends on agent

intelligence and contagious environments that

has many other balls moving around. The most

important idea is the agents and the

environment are interacting and running

according to their periodic circumstances

without any forced or pre-planned schedule,

and even without central or external interfere or

control

on this example we have two types of agents (

smart balls) one is normal and the second is

selfish , and we have only one super role which

is Move that has three atomic roles :

check_next_position () , do_move(), and wait_

time(). Figure 8 depicts the ARL dynamic view

through AIP by presenting moving one agent(

ball) from one position to another. This AIP

represents the general case of agent moves from

one position to another , during execution.

Figure 8: Agent ball locked into move role interacting with another agent role to commit moving

3.1 Agent and Threads in Java

ARL suggests to use Threads in Java

programming language , as a thread has

very much in common with agent as

runnable entity, respectively, multi-

threading techniques is used to represent

MAS, the thread can grab the chance to

execute the code in their run () procedures.

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 50

(Figure 9.) . As an agent can be represented

by thread, it can be activated, deactivated

and terminated, the usual way to do this is

through the static sleep () and run ()

methods. In our example the run method of

the BallThread class uses the call to

sleep(5) to indicate that the thread will be

idle for the next five milliseconds. After

five milliseconds, it will start up again, but

in the meantime, other threads (agent) have

a chance to get work done.

Figure 9. The Event Dispatch and Ball Threads in java

3.2 Thread Properties

3.2.1 New threads

 Creating a thread with the new

operator, practically means creating an

agent instant for example, new Ball()— the

thread is not yet running. This means unlike

normal object oriented programming, in

which execution starts as the main() or init

() main program start running . But in agent

orientation the execution will starts only

when an agent is activated by locking into a

legitimate role, that’s the actual definition

the new state of runtimeOF agent

computing theory. So threads are allocated

in RAM according but they will be run and

activated only when locked to initiate a role

or locked into interdependent running

agent-role. Dependently it is not weird to

run agent base system and it do nothing

until new state and circumstances applied to

start execution.

3.2.2 Runnable threads

Once the agent locked into role it invokes

the run () method, and become the thread is

runnable. A runnable thread may not yet be

running according to agent (thread)

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 51

behavior and role (routine /procedure)

constraints . It is up to agent –role and

MAS environment to give the thread time

to run. When the code inside the thread

begins executing, the thread is running. that

a runnable thread may or may not be

running at any given time. (This is why the

state is called "runnable" and not

"running.") See Figure 10 defines in Java

threads' running options , the main issues in

these options are priorities and blocking ,

this is how multi-threading is applied in

Java program runtime.

3.3 Agent application using Java based

on ARL

In our application , smart balls are bouncing

in a given frame randomly , two kinds of

balls provided : black and blue . no ball

must collide with another at any giving time

and no ball should go out of frame. The

blue ball (selfish) has more priority to move

freely. the start button will generate black

ball (normal) the selfish button will

generate blue ball (selfish). Balls can be

generated as much as the system is

exhausted, and no more RAM available.

The structure of balls is represented of

JAVA threads and the positions of these

balls are stored in array list objects as the

following code:

Figure 10. agents (Threads) in Java language runtime

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 52

public void addBall(boolean selfish, Color color)
{

 Ball b = new Ball(canvas, color , ballid);
canvas.add(b);
BallThread thread = new BallThread(b, selfish);
thread.start();

 ballid ++ ;
}

public static ArrayList postsx = new ArrayList ();
public static ArrayList postsx = new ArrayList ();

Figure 11: Part of code in JAVA presenting the behavior of agent ball class

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 53

 We see in Figure 11, JAVA programming

class () presents a simple agent (having full

agency characteristics) that performs simple

role. The intelligent factors in this agent

class are:

i. Smart balls pushed into environment

using buttons start or selfish (see Figure 7)

they start into runnable threads

ii. Check if the smart ball (agent) is normal

or selfish

iii. Selfish agent has priority to move in the

frame and push less priority agents

iv. Selfish is moving with faster pace than

normal agent

v. Agents (balls) are performing moving

role see Figure 12 this role has some rules

the agent must consider:

vi. Each ball will move by a random (from 0

to 5) distance to random direction in the

frame

vii. Each agents (selfish or normal) will not

be allowed move out the frame

Figure 12: Part of code in JAVA of moving role class that agent ball can lock with

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 54

Another example of applying multi agent

system using ARL is shown in Figure 13 ,

that represents an environment of cars in

corridor that leads to number of rooms,

each car objective is get into a room , with

no more one car in a room as soon as a care

leave a room (by internal intention) to serve

another objective any closest car will fill

that room , however, because the number

car is greater that the number of rooms , the

rest of cars will keep moving until a room is

available, (agents) that can lock to roles

moving in four direction (forward ,

backwards, right , left) , the agents which

represents in car, the entire car system and

its coordination is considered MAS.

Figure 13 : Real environment that represents smart cars allocated in rooms and moving in corridor

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 55

Figure 14: Organizational View of smart cars in corridors

Figure 14 depicts the organizational view of

autonomous smart cars moving in corridor

to occupy one room for each car. There are

two super roles, firstly, moving ,agents

must have (α key) to perform atomic roles

with this super role on cars , these roles

concerns moving cars in all directions or

stop. Another super role, sensing with (β

key) that responsible to sense and

communicate with surrounding

environment that makes sure to move in

right track not to hit another car or walls

and to check which room is available to go

in, or go out of room according to internal

state or outside user interference, which

represents a sub role to halt all system or

interfere to give certain car more advantage

to speed up to allocate a room.

As shown in previous example, we can

apply the smart cars and rooms systems in

Java threads, each car has agent, this agent

can lock and unlock into various atomic

roles that defined in Figure 15. This article

has defined integrated view of engineering

and application view of Smart agent

system. Nevertheless, when make this

system run there is no grantee which thread

will starts first, on this base there would be

no clear path or preplanned scenario of

system run. The classical view of main ()

to start system in object oriented system is

now over. in agent base system each thread

(Agent) has many candidate main () to lock

with and to start.

4. CONCLUSION

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 56

 This article presents new computing

paradigm has its engineering and

programming views. It based on smart

Agent Orientation or Agent Based software,

provides two examples of using smart

agents in real system , first is concerning

with software system and the second is

concerning with smart robotic system . The

main value of this article is to give an

overall view of a simple real environment

of Multi Agent System MAS supported by

application proof, and to show the

integration and incorporation of modeling

tools and programming techniques in multi

agent systems. The idea is to solve

complexity of MAS through

decomposition. The complexity of multi

agent system is managed by breaking it into

roles and agent classes, basically, roles are

considered as positions and agents are

considered as people fill those positions,

within this article we will attest a look on

programming codes of agents and roles

classes to represent a new agent

programming paradigm, we notice that

those agents and roles classes codes are in

fact reflecting agent engineering methods

and techniques based on Agent Role

Locking ARL theory.

For the sake of code object oriented

language -Java IEEE- has been used as an

application of this theory., accordingly we

use this view for applying smart bouncing

ball as software system , and smart cars in

corridor as robots system..

The program execution run fore agent

orientation case will be totally different

from the case of main () run of object

orientation as , in the first case all threads

of agents released in run time memory and

start running (activated) or stop (

deactivate / sleep) according to agent

internal state and intentions to satisfy agent

base system main objectives. For the case

of smart agent threads no guarantee which

threads will start first because it depends on

system functionality or depends on agent

internal state (goal), with a result of there is

no guarantee or preplanned scenarios if

how agents will act after they released in

memory in the runtime.

 REFERENCES

[1] Hang-Jiang, Q. Zheng, L. Lei, S. Li-Ping

and H. Xing-Chen. Formal Specification and Proof

of Multi-Agent Applications Using Event B.

Information Technology Journal. Vol. 6 issue 8, Pp.

1181-1189. 2007

[2] Z. Hou, Z. Yu, W. Zheng and X. Zuo.

Research on Distributed Intrusion Detection System

Based on Mobile Agent. Journal of Computers, Vol.

7, No. 8, pp. 1919-1926. August 2012.

Global Institute for Study and Research Journal (GISR-J) 2018 June Vol.4 No6

 Mayfair. 19hertford street, London w1j7ru. UK. license 10220051uk

 57

"doi:10.4304/jcp.7.8.1919-

1926".http://dx.doi.org/10.4304/jcp.7.8.1919-1926

[3] William Rand; Uri Wilensky (November

15–8, 2007). "Visualization Tools for Agent-Based

Modeling in NetLogo". Agent2007. Chicago, IL.

Retrieved October 4, 2012.

[4] Andreas Viktor Hess, Øyvind Grønland

Wollerm. PhD Thesis, Multi-Agent Systems

andAgent-Oriented Programming ,DTU Compute,

Technical University of Denmark Matematiktorvet,

Building 303B, DK-2800 Kongens Lyngby,

Denmark, Lyngby, 01-July-2013

[5] Ingrid Nunes, Elder Cirilo, Carlos J. P. de

Lucena, Jan Sudeikat, Christian Hahn, Jorge J.

Gomez-Sanz. Agent-Oriented Software Engineering

X , Lecture Notes in Computer A Survey on the

Implementation of Agent Oriented Specifications

Science Volume 6038, 2011, pp 169-89 ISBN 978-

3-642-19207-4

[6] Michael Köster, Federico Schlesinger,

Jürgen Dix 10th International Workshop, ProMAS

2012, Valencia, Spain, June 5, 2012, Revised

Selected Papers

[7] Salaheddin Juma Juneidi and G.A.Vouros.

Survey & Evaluation of Agent Oriented Software

Engineering main approaches . International Journal

of Modelling and Simulation 01/2010;

book(2010):1-15.

DOI:10.2316/Journal.205.2010.1.205-4306

[8] L. Jemni Ben Ayed, and F. Siala.

Specification and Verification of Multi-Agent

Systems Interaction Protocols using a Combination

of AUML and Event B. XVthInternational

Workshop on the Design, Verification and

Specification of Interactive Systems DSV-IS 2008,

LNCS 5136, Kingston, Ontario, Canada, pp. 102-

107. 2008

[9] Marc-Philippe Huget, Extending Agent

UML Sequence Diagram, F. Giunchiglia ct al. (Eds.)

: AOSE 2002 ,Lncs 2585, pp 150-161, Springer-

Verlag Berlin Heidelberg 2003.

[10] Salahededdin J. Juneidi, George A. Vouros

"Agent Role Locking (ARL): Theory for Agent

Oriented Software Engineering" , IASTED

International confrence SE November 9-11, 2004,

MIT, Cambridge, MA. USA.

[11] Michael Wooldridge , Nicholas Jennings ,

David Kinny , Autonomous Agent and Multi- Agent

System , 3, 285-312,2000 : The Gaia Methodology

for Agent-Oriented Analysis and Design. 2000

Kluwer Academic Publisher 20

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

